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Abstract: An autonomous driving environment poses a very stringent requirement for the timely
delivery of safety messages in vehicular ad hoc networks (VANETs). Time division multiple access
(TDMA)-based medium access control (MAC) protocols are considered a promising solution because
of their time-bound message delivery. However, in the event of mobility-caused packet collisions,
they may experience an unpredicted and extended delay in delivering messages, which can cause
catastrophic accidents. To solve this problem, a distributed TDMA-based MAC protocol with mobility-
caused collision mitigation (MCCM-MAC) is presented in this paper. The protocol uses a novel
mechanism to detect merging collisions and mitigates them by avoiding subsequent access collisions.
One vehicle in the merging collisions retains the time slot, and the others release the slot. The common
neighboring vehicles can timely suggest a suitable new time slot for the vacating vehicles, which can
avoid access collisions between their packet transmissions. A tie-breakup mechanism is employed to
avoid further access collisions. Simulation results show that the proposed protocol reduces packet
loss more than the existing methods. Consequently, the average delay between the successfully
delivered periodic messages is also reduced.

Keywords: vehicular ad hoc networks; medium access control; time division multiple access; merging
collision mitigation; time-bounded message delivery

1. Introduction

A medium access control (MAC) protocol with high performance is required for
vehicular ad hoc networks (VANETs) to ensure road safety. In VANETs, each vehicle needs
to send a periodic message every 100 ms to support the safety applications [1,2]. The timely
delivery of messages is even more critical for autonomous driving environments [3–5]. On
the one hand, contention-based MAC protocols such as IEEE 801.11p [6] cannot meet this
stringent requirement [7]. On the other hand, contention-free MAC protocols, especially on
the basis of time division multiple access (TDMA), can provide deterministic access to the
channel for time-bound message delivery, thus becoming a research hotspot [8–10].

In a TDMA environment, the time is divided into periodic frames and the frames are
placed into several time slots. Each vehicle in the VANET has a dedicated time slot in a
frame for its data transmission. This has two-fold benefits: each vehicle is time-bound and
obtains collision-free access to the channel in usual circumstances. However, two vehicles
that are far apart from each other can be assigned the same time slot for scalability. At the
time of slot allocation, the protocol should ensure that such time slot assignment does not
cause communication interference among vehicles. However, due to vehicle mobility, two
vehicles that possess the same time slot move closer, causing a packet collision between
their transmissions, and both their packets are lost to their common neighboring vehicles.
This phenomenon is known as the merging collision problem [8,10]. Merging collisions are
one of the key factors which degrade the MAC performance for VANET [11,12]. However,
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solving it is a challenging task [8]. The existing protocols cannot completely eliminate the
packet collisions caused by the merging collision scenarios [8].

VeMAC [13] is a popular distributed TDMA-based MAC protocol for VANET, which
provides a reliable broadcasting mechanism for exchanging periodic messages. It also
proposed a collision mitigation mechanism to avoid the merging collision scenario between
vehicles moving in the opposite directions. This partitioned the TDMA frame into two
disjoint fixed continuous portions. One portion is dedicated to being used for the vehicles
moving towards the left direction and the second portion for the vehicles moving towards
the right direction. With this scheme, two vehicles moving in opposite directions cannot
have a common time slot, and thus a packet collision between them is avoided. However,
the vehicles moving in the same direction can possess the same time slot and merging colli-
sions between them can occur. In addition, if the vehicle density in one direction increases
beyond the size of its dedicated partition, the VeMAC permits the vehicle to acquire a time
slot from another partition which can also cause the merging collision between the two
vehicles moving in opposite directions. Thereafter, MoMAC [14] extended the idea and
proposed the further partitioning of each section according to the different road lanes, e.g.,
one subsection was dedicated for one lane. In this way, the merging collisions between
vehicles moving in the same direction but in different lanes are mitigated. However, a
merging collision may still occur between vehicles moving in the same lane. Similarly,
several other works [4,15–20] have also focused on the frame partitioning technique to
mitigate the merging collision problem.

In general, the frame partitioning technique cannot solve the merging collisions be-
tween the vehicles that can be assigned time slots in the same partition. Moreover, it limits
the number of available time slots for the vehicles seeking a new time slot, which can
cause more access collisions, thus degrading the MAC performance with the increase of
vehicle density. To resolve these problems, this paper presents a distributed TDMA-based
MAC protocol with mobility-caused collision mitigation (MCCM-MAC) and focuses on
improving the performance of a distributed TDMA-based MAC protocol without depend-
ing upon the frame partitioning. We build on the VeMAC’s broadcasting mechanism and
mitigate the packet collisions through novel mechanisms. Similar to VeMAC, each vehicle
broadcasts the information of neighboring vehicles and can detect the loss of its slot on
the basis of the received information from its neighbors. However, unlike VeMAC, with
the proposed protocol, one of the vehicles in the merging collision retains its time slot,
and other vehicles vacate their time slots. Therefore, the retaining vehicle does not need
to compete for a new time slot and can successfully transmit in the next frame using its
existing time slot, thereby avoiding further delay. If the number of vacating vehicles is
only one, it can also successfully acquire a new time slot in the next frame as there will be
no competitor. This is achieved through the proposed third parties slot-merge collision
mechanism. However, in the case of multiple vacating vehicles, they have to compete for
new time slots, which can cause further packet collisions. To mitigate this situation, the
proposed protocol employs two novel resolution mechanisms, namely the slot suggestion
mechanism and the tie-breakup mechanism, to avoid subsequent access collisions. The
contributions of this paper are as follows:

• The paper highlights and formulates the extended delay problem, which the vehicles
can experience in the event of a merging collision with a TDMA-based MAC protocol
for VANET. This delay can be catastrophic, especially in an autonomous driving
environment. We show that this delay is directly proportional to the number of
collided packets soon after the merging collisions. Therefore, avoiding the subsequent
packet collisions can restrict further prolonged delay.

• The proposed third parties slot-merge collision mechanism enables the vehicles to
detect and mitigate the slot-merge collision of the neighboring vehicles. Consequently,
one of the vehicles in the slot-merge collision retains the time slot, and others vacate
the time slot. This eliminates the possibility of subsequent access collision in case of a
merging collision between two vehicles.
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• The proposed slot suggestion mechanism is employed to avoid the subsequent access
collision between the vehicles that vacate their time slots due to the slot-merge collision.
This can avoid the subsequent access collision in case of a merging collision between
three vehicles.

• The proposed tie-breakup mechanism enables one of the vehicles in the access colli-
sions to retain the time slot and others to vacate, thereby restricting further subsequent
access collisions. This can avoid subsequent access collisions after an access collision.

• The extensive simulation results have been presented to show the effectiveness of the
proposed protocol.

The remainder of the paper is organized as follows: Section 2 describes the related
work. Section 3 introduces the necessary background and formulates the problem. Section 4
presents the proposed protocol. Section 5 details the simulation studies, and finally,
Section 6 concludes the paper.

2. Related Work

Many TDMA-based MAC protocols have been proposed for VANETs. The survey
works [8,9,21,22] encompass a considerable number of these protocols. One popular classi-
fication is based on the slot management process. It can be either controlled by a central
entity [18,23–26] or managed by each vehicle on its own [13,14,16,20,27,28], thus catego-
rizing the protocols into the centralized MAC protocols and distributed MAC protocols,
respectively [21]. The centralized MAC protocols require either roadside units (RSU) or
cluster heads (CH) to be in operation. On the other hand, the distributed MAC protocols do
not require any centralized coordinators and thus are easier to deploy. However, solving
the merging collisions is more challenging in distributed protocols due to the absence of any
central coordinator for slot management. The focus of this work is the distributed TDMA
MAC protocols for VANETs. Then, some of the protocols are based on purely the TDMA
technique, e.g., [13,14,16,20,28], and some combine it with the contention-based approach
to form a hybrid approach, e.g., [29–33]. Our work is based purely on the TDMA technique.

ADHOC-MAC [34] provides a reliable broadcasting mechanism for exchanging peri-
odic messages in a TDMA fashion, which may be considered a pioneer TDMA-based MAC
protocol for VANET. Based on this, VeMAC [13] improved the broadcasting mechanism
further by defining the slot release prevention condition. Using the frame partitioning
technique, VeMAC [13] and MoMAC [14] formed fixed-size partitions to reduce the packet
collisions. However, this method resulted in the channel wastage problem under the unbal-
anced traffic conditions. Therefore, A-VeMAC [16], AODMAC [20] and SAMD [19] used
adaptive frame partitioning, i.e., partition length is dynamically adjusted according to the
vehicle density in the respective sections. Fine-grained MAC [4] used a dynamic beacon
rate to address the slot shortage problem but used the same solution as MoMAC for the
merging collision. None of the above work can mitigate merging collisions between vehi-
cles in the same partition. Additionally, their frame partition scheme must be in accordance
with the road layout that makes them depend on the road topology.

PTMAC [35] used a collision prediction-based mechanism to reduce packet collisions
caused by the merging collision scenarios. A slot-merge collision between two vehicles that
are three-hop apart is predicted using their two intermediate vehicles. The two intermediate
vehicles can detect a common slot used by two different vehicles by examining the one-hop
set. Intermediate vehicles then classify this detection as a possible collision based on the
speeds and directions of susceptible vehicles. Then one of the vehicles is indicated to
vacate and acquire a new time slot. However, the vacating vehicle, unaware of free slots
within its three-hop range, can only select a new time slot based on its two-hop information,
which can again lead to a similar collision situation. The problem becomes worse with
the increasing vehicle density, as it is harder to obtain a new time slot that is free in its
three-hop communication range. Furthermore, PTMAC uses RSU for its efficient operation
in four-way road intersection scenarios.
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In [36], the number of packet collisions due to merging collision scenarios is reduced
by adjusting the transmission power, i.e., for higher vehicle density, the vehicles lower their
transmission power to reduce their communication range and vice versa. However, the
reduced communication range affects their surrounding awareness quality, which in turn
affects vehicle safety. In [37], the received signal strength of neighboring vehicles is used
for time slot management. In [38], a mechanism for adaptive beaconing is proposed for a
distributed TDMA-based MAC protocol. Each vehicle calculates a coefficient, named the
danger coefficient, based on the information received from neighboring vehicles. Then, each
vehicle adjusts its beaconing rate based on the value of the danger coefficient. A greater
value signifies a more dangerous situation, so the vehicle increases its beacon rate and vice
versa. The protocols [39,40] mitigate packet collisions based on the motion prediction of
vehicles. A comparison of distributed TDMA-based MAC protocols for VANETs can also
be found in [41].

3. Preliminaries
3.1. Operation of a TDMA-Based MAC Protocol in VANETs

In VANETs, each vehicle is required to send a periodic message to update essential
information to its neighboring vehicles and broadcast an emergency message as soon as
possible in order to maintain road safety. In TDMA-based MAC protocol, each vehicle
achieves this by using its owned time slot in each frame, which is acquired when joining
the network.

The slot acquisition process is as follows. Each vehicle first listens to the channel for
a time frame to determine the free time slots in the frame. It then randomly selects a free
time slot to transmit. A free slot is the time slot that fulfils the following two conditions:
(i) It is not in use by any other vehicle in the communication range of this vehicle; (ii) It
does not cause the hidden terminal problem. This is achieved by selecting a time slot that
is not owned by any other vehicle in the two-hop neighborhood [13,14,34]. If more than
one vehicle in the two-hop neighborhood simultaneously selects the same free time slot
for the transmission, packet collisions occur, which is called the access collision [8]. The
vehicle must then repeat the aforementioned process until it is successful. However, once
the vehicle successfully acquires a time slot, it keeps using this time slot until and unless it
again loses the time slot.

A merging collision [8] can cause the vehicle to lose its owned time slot. Consider
the merging collision scenario in Figure 1. At time t, vehicles A and B are within the
communication range of each other and own the time slots 1 and 2, respectively. Similarly,
vehicles L and M are within the communication range of each other and own the time slots
1 and 3. However, vehicles A and B are not within the communication range of vehicles L
and M. Therefore, both A and L can transmit successfully despite possessing the same time
slot, i.e., slot 1. After a time interval of ∆t, all four vehicles come within the communication
range of each other. Now a packet collision will take place between the transmissions of A
and L, and both their packets will be lost, i.e., B and M cannot receive the packets of A and
L. Here, we say that A and L have met a slot-merge collision due to slot 1.
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With the existing TDMA-based distributed MAC protocols for VANETs [13,27,28],
both vehicles A and L lose their time slots in this particular scenario. Therefore, they need
to acquire new time slots for their next transmissions. Now, if they select the same free time
slot, an access collision occurs. We call this access collision the subsequent access collision
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because it occurs soon after the previous packet collision. A subsequent access collision
means two or more successive packet collisions without a successful data transmission
in between.

3.2. Extended Delay Problem

In general, the aftermath of a merging collision scenario can be following:

• Packets of vehicles whose transmissions met the packet collision are lost, and all such
vehicles may need to acquire a new time slot for the next transmission.

• A single merging collision can spark subsequent access collisions.
• The above two consequences result in an extended delay in obtaining updates of the

vehicles involved in the merging collision.

Consider the TDMA-based MAC environment shown in Figure 2, where each TDMA
frame consists of a total number of five time slots, i.e., F0 is from t = 0 to t = 4, F1 is from t = 5
to t = 9, and so on. The figure shows the transmission timelines of a vehicle that initially
owns the time slot 1 in F0. The bottom timeline is a case when the vehicle successfully
transmits in each frame using its owned time slot 1 at t = 1, 6, 11, 16, 21 and there is no
packet collision. Let tF denote the length of a single TDMA frame, then the delay between
the two consecutive transmissions of the vehicle is also tF.
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Figure 2. Transmission timelines for a typical node in a TDMA-based MAC for VANET representing
some of the possible causes; the bottommost is a baseline case when no packet collision has occurred;
the middle timeline represents the case when the vehicle met a slot-merge collision but no subsequent
access collision and the uppermost represent the case when the vehicle met a slot-merge collision as
well as a subsequent access collision thus causing the extended delay problem.

Now consider the case in the middle timeline where the vehicle met a slot-merge
collision in F1 at t = 6. As a result, the transmission of the vehicle in slot 1 of F1 was lost,
and the vehicle lost its time slot. Therefore, the vehicle needed to reselect a new free time
slot in F2 for its next transmission. As per the slot acquisition process, the vehicle listens to
the channel until the cycle completes in time slot 1 of F2 and then selects one of the free
time slots. However, up to this point, the time period 2tF has been elapsed since the last
successful transmission in slot 1 of F0. Assuming that time slot 3 is a free time slot, the
vehicle selects time slot 3 as its new time slot in F2. An additional time period ∆t, which
is less than tF, is also elapsed in F2 between slot 1 and slot 3. The transmissions through
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this time slot were successful, i.e., transmissions at t = 13, 18, 23. However, in this case,
the delay between the first two successful transmissions, i.e., t = 1 to t = 13, is 2tF + ∆t,
as shown in the figure. Finally, consider the topmost timeline where the vehicle met the
merging collision in F1 and then selected a new time slot 3 in F2 that met a subsequent
access collision at t = 13. Therefore, the vehicle has to reselect a new time slot again in F3.

In F3, the vehicle selects time slot 4 through which transmissions were successful, i.e.,
at t = 19, 24. In this case, the delay between two successful transmissions, i.e., t = 1 to
t = 19, is 3tF + ∆t. This delay is greater than three times the regular time interval tF. Please
note that it is never guaranteed that the vehicle will be successful after one subsequent
access collision. The possibility of further access collisions remains, in which case the
delay increases until the vehicle is successful in its transmission. In general, the delay D
experienced by the vehicle after the merging collision can be given by:

D = tF + ntF + ∆t (1)

where n is the number of packet loss between two successful transmissions, tF is the frame
length and ∆t is the time elapsed in the frame in which the vehicle transmits successfully,
i.e., between the time slot at which the cycle completes and the time slot at which the
vehicle transmits.

The delay between two consecutive periodic messages is critical. A packet loss means
an extended delay than the regular time interval. Moreover, the more subsequent access
collisions, the more packet loss of vehicles occurs, resulting in the extended delay to prolong
further, which we call the extended delay problem. From Equation (1), it is clear that the
delay between two periodic messages is directly proportional to the number of packet
losses. Therefore, our research aims to minimize n by avoiding the subsequent access
collisions in order to restrict the extended delay from prolonging.

4. MCCM-MAC Protocol

MCCM-MAC is a distributed TDMA-based MAC protocol for VANETs. The slot
management is not controlled by any central entity. Each vehicle is responsible for its own
time slot acquisition and vacation. For this purpose, each vehicle maintains the currently-
known vehicles set (CVS) and the previously-known vehicles set (PVS) and exchanges these
sets with the neighboring vehicles. Using these sets, each vehicle detects the slot-merge
collision of its own slot as well as the slot-merge collision of other neighboring vehicles.
The relevant mechanisms are referred to as the self slot-merge collision and the third parties
slot-merge collision, respectively. The packet collisions are then mitigated through the
third parties slot-merge collision mechanism, slot suggestion mechanism, and tie breakup
mechanism. The basic principle is to avoid a subsequent access collision after a packet
collision which not only reduces the overall packet loss count but also avoids the prolonged
delays between two consecutive periodic messages.

The process for mitigating the merging collision scenario is shown in Figure 3. On the
occurrence of a merging collision between the vehicles, their common neighboring vehicles
can detect the merging collision through third parties slot-merge collision and mitigate it
by indicating one of the vehicles in the slot-merge collision to retain the time slot. The other
vehicles in the slot-merge collision detect the self slot-merge collision and vacate their time
slots. The vacating vehicles can receive a suggestion for selecting a new time slot from a
known neighboring vehicle through the slot suggestion mechanism. However, in case a
packet collision cannot be avoided, it does occur. Then the neighboring vehicles, through
the tie-breakup mechanism, indicate one of the vehicles in the packet collision to retain the
time slot and others to vacate it. This can avoid further packet collisions.
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In general, MCCM-MAC can avoid another packet collision after a packet collision by
employing the proposed mechanisms. This enables a particular vehicle to avoid successive
packet collisions, thereby avoiding the prolonged delay between its periodic messages.

4.1. CVS and PVS Formation

Each vehicle has a unique vehicle ID [13,14]. It must also possess a time slot in the
frame for transmission. Therefore, the transmission of a vehicle can be characterized
by an ordered pair (VehicleID, SlotNo). Each vehicle maintains the following two sets
locally. The vehicle updates these sets in every time slot and then broadcasts the latest in
its periodic message.

• Currently-known vehicles set (CVS): After every successful reception, the vehicle
records an ordered pair consisting of the source vehicles’ ID and slot number in its
CVS, i.e., (srcVehicleID, srcSlotNo) ∈ CVS. This set constitutes the known vehicles
that are directly within the communication range of this vehicle and possess a valid
time slot.

• Previously-known vehicles set (PVS): Let Fn represent the current frame cycle, and
Fn−1 represent the previous frame cycle. Vehicle V has an entry (X,s) ∈ CVS in the
frame cycle Fn−1, but V did not have any successful reception in the time slot s of the
next frame cycle Fn then (X,s) ∈ PVS. This procedure is also depicted in Figure 4. This
set constitutes the vehicles that might have possibly met the merging collision.
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4.2. Known and Unknown Vehicles

At the point of receiving a packet from a source vehicle in Fn, the vehicle classifies
the source vehicle as a known vehicle or an unknown vehicle. If the vehicle has already
listened to the same source in the previous frame, i.e., in Fn−1 (srcVehicleID, srcSlotNo)
∈ CVS, then the source vehicle is classified as a known vehicle. However, if the vehicle
has not listened to it in the previous frame, i.e., in Fn−1 (srcVehicleID, srcSlotNo) /∈ CVS,
then the source vehicle is classified as an unknown vehicle. This classification is useful in
detecting and mitigating packet collisions, as discussed in the next sections.

4.3. Self Slot-Merge Collision

Each vehicle checks for the status of its owned time slot on every reception. If the
vehicle detects a slot lost at any point, then it needs to acquire a new time slot. A vehicle
loses its time slot if it finds that a packet is from a known vehicle, but the received CVS
does not include its entry. With an ideal channel, this condition can only be true in the
case of a merging collision [13,14]. Let vehicle V own time slot tv, and V receives a packet
from a source vehicle Y in the current time slot tc. If Y is an unknown vehicle, then (Y,tc)
is added in CVS(V), but the lost slot condition is not checked in this case. However, if Y
is a known vehicle, then the following lost slot condition is checked. If (V,tv) ∈ CVS(Y)
then V retains the time slot tv, but if (V,tv) /∈ CVS(Y), then V has met a slot-merge collision
and lost its time slot tv. The aforementioned procedure for detecting the self slot-merge
collision is compatible with the VeMAC protocol and takes into consideration its slot release
prevention condition [13]. However, we complement it with the proposed third parties
slot-merge collision procedure.

4.4. Third Parties Slot-Merge Collision

In addition to detecting the slot-merge collision for its own time slot, we propose
that each vehicle also detects any other merging collision which has taken place within its
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communication range. We call this third parties slot-merge collision detection because this
vehicle is not itself part of the merging collision. On detection of such a merging collision,
we mitigate it by ensuring that one vehicle keeps using the time slot and other vehicles
vacate it. This is achieved using the following rules on the reception of each packet. The
overview of these rules is also given in the Figure 5.
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Rule I. The vehicle V detects a slot-merge collision between two other vehicles, X and
Y if (Y,s) ∈ PVS(V) and V receives a packet from a source such that (X,s) ∈ PVS(src) where
X and Y are third party vehicles which possess the same slot s. Here X 6= Y 6= V 6= src.

Rule II-a. If the vehicle V with (Y,s) ∈ PVS has detected the slot-merge collision
between the two third party vehicles X and Y, then V indicates vehicle Y to retain the slot
by including (Y,s) in both sets CVS and PVS, i.e., (Y,s) ∈ PVS(V), (Y,s) ∈ CVS(V).

Rule II-b. If the vehicle V with (Y,s) ∈ PVS has detected the slot-merge collision be-
tween the two third party vehicles X and Y, but with (X,s) ∈ PVS(src) and (X,s) ∈ CVS(src),
then it means the source vehicle has already indicated X to retain the slot s, therefore, V
does not indicate vehicle Y to retain the slot s and thus does not include (Y,s) in its CVS, i.e.,
(Y,s) ∈ PVS(V), (Y,s) /∈ CVS(V).

Rule III. If the vehicle V with (Y,s) ∈ PVS has detected the slot-merge collision between
two third party vehicles X and Y but cannot indicate vehicle Y to retain the slot (due to
Rule II-b), then it offers a suggestion of a possible free slot for Y to select as a new slot.

Rule IV. If vehicle V has received a packet from a source vehicle with exactly the same
entry in PVS, i.e., (Y,s) ∈ PVS(V), (Y,s) ∈ PVS(src), then the source vehicle takes the lead
role to indicate Y whether to retain the slot s or not, and the vehicle V adapts according to
the source vehicle, i.e., if (Y,s) ∈ CVS(src) then (Y,s) ∈ CVS(V) and if (Y,s) /∈ CVS(src) then
(Y,s) /∈ CVS(V), and V does not change this state further.
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4.5. Slot Suggestion Mechanism

If the vehicle, which has identified a third parties merging collision, cannot indicate its
known vehicle in the merging collision to retain the time slot, then it offers a slot suggestion
for it to acquire a new time slot. The vehicle selects a free slot for its known vehicle and
broadcasts in its periodic message. All other surrounding vehicles are informed of the
status of this time slot and do not select it as a free slot if possible. This reduces the chance
of packet collision if this free slot is selected for transmission.

Suppose X and Y are known vehicles to each other in frame Fn and own slots s and
r, respectively, i.e., (X,s) ∈ CVS(Y) and (Y,r) ∈ CVS(X). This means both were able to
successfully listen to each other’s packet in frame Fn. In the next frame, Fn+1, however, X
met a slot merge-collision, which was detected by Y (with the help of Rules I, II and III),
but Y cannot indicate X to retain the slot. Now, Y transmits its periodic message with (X,s)
∈ PVS(Y) and s as a suggestion slot for X. On receiving this message, all vehicles become
aware of slot s. All vehicles other than X do not pick s as a free slot as long as any other slot
is available for them. The vehicle X reassesses the suggested slot s and if it is a valid free
slot, then the vehicle selects it; otherwise, it selects another new slot. This process is also
depicted in Figure 6.
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4.6. Example Scenario

We now demonstrate the third parties slot-merge collision and slot suggestion mech-
anisms through an example where a slot-merge collision between three vehicles occurs.
Consider the example scenario shown in Figure 7, G1 = {(A,1), (B,2)} = CVS(A) = CVS(B),
G2 = {(L,1), (M,3)} = CVS(L) = CVS(M) and G3 = {(X,1), (Y,4)} = CVS (X) = CVS(Y) where (N,
s) means the vehicle N owns the time slot s. Initially at time T, G1, G2 and G3 are out of
range from each other, therefore there is no interference due to s(A) = s(X) = s(L) = 1 where
s(N) represents the time slot of vehicle N. However, at time T + ∆t all the groups G1, G2
and G3 have merged such that all vehicles are now within range of each other.
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Now in slot 1 of Fn, all three vehicles A, L and X transmit, resulting in a packet collision
and hence the packets of these vehicles are lost. As per our protocol, vehicle B adds (A,1)
to its PVS, vehicle M adds (L,1) to its PVS and vehicle Y adds (X,1) to its PVS (recap the
procedure for adding an entry in PVS in Section 4.1).

In slot 2, B transmits, and all others receive its message successfully; vehicle A detects
the lost slot for its owned slot and vacates slot 1 (Section 4.3); vehicle M detects a third
parties slot-merge collision between vehicles L and A with the help of proposed Rule I
(Section 4.4); similarly, vehicle Y detects the slot-merge collision between vehicles X and A.
In slot 3, as per Rule II-a, vehicle M transmits its message with (L,1) belonging to its CVS
and PVS, which all others receive successfully. The transmission of M included (L,1) ∈ CVS,
therefore, as per the lost slot detection algorithm, L does not vacate slot 1 and retains it.
Meanwhile, vehicle Y detects that L has been indicated by M to retain slot 1, so Y does not
indicate vehicle X to retain slot 1 as per Rule II-b. However, Y includes a suggestion for X
for a free slot, e.g., slot 5, as per Rule III. In slot 4, Y transmits, which leads to the lost slot at
X because (X,1) /∈ CVS(Y), so vehicle X vacates slot 1. However, X has a suggestion for a
new slot, i.e., slot 5, and vehicle A also knows about this suggestion.

In the next frame, Fn+1 at slot 1, there are two candidates, i.e., vehicle A and X, which
need to acquire new slots as both have lost their slots in the previous frame Fn. Vehicle A,
being aware of the suggestion for X, will not choose slot 5 as a new slot; therefore, it selects
any other free slot, i.e., slot 6. Vehicle X will reassess the received suggestion, find that slot
5 is free, and select slot 5 as the new slot. This eliminates the competition between A and X
enabling both to acquire the slots successfully.

In short, a packet collision between the transmissions of A, L and X took place in frame
Fn, and all three vehicles were again able to successfully transmit in the next frame Fn+1
avoiding the extended delay problem.

4.7. Tie-Breakup Mechanism

If multiple vehicles, which lost a slot due to the merging collision, happen to select
the same time slot again, then a subsequent access collision takes place. To avoid further
subsequent access collisions, we employ the tie-breakup mechanism to mitigate it such that
one of the vehicles keeps using this slot, and the others vacate the slot. The vehicle that
vacates has to acquire a new time slot in the next frame, but its competitor would not be
there as it retained the old slot. In this way, another subsequent access collision is avoided.

To achieve the above, we propose that whenever a vehicle selects a new slot, it sets a
special message which indicates that this is the first transmission through this time slot. It
is essentially the same periodic message but only with a special feature set. Hereafter, we
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refer to this transmission as the first transmission (FT). In addition, a vehicle can distinguish
the FT entries in CVS. Then the following rules are used for the mitigation:

Rule V. If the vehicle V receives a packet from a source with an FT entry (X,s) ∈ CVS(src)
and there is no entry against time slot s in its own CVS, i.e., s /∈ CVS(V), then V adds this
received entry into its CVS. However, these FT entries cannot be used for PVS calculation.

Rule VI. If the vehicle V receives an FT entry against a time slot for which V already
has an FT entry in its CVS, then V retains the entry of the lowest vehicle ID and the entry of
higher vehicle ID is discarded.

A flow chart of the above rules is given in Figure 8. In Rule VI, vehicle ID is used to
break the tie between two FT entries. The entry with the lowest vehicle ID has no special
significance, but we need to define a criterion to retain one entry and discard another.
Another important point is that the entries added in CVS by virtue of Rule V are those
entries from which the vehicle has not listened directly; therefore, these entries do not
qualify to be added in PVS. Ignoring this important point will lead to the malfunction of
third parties slot-merge collision detection and hence degradation of the performance.
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We now demonstrate the tie-breakup mechanism through an example scenario shown
in Figure 9. Let the vehicles merge as per the topology shown in Figure 9a in time slot 6 of
Fn−1. This leads to a slot-merge collision between vehicle A and L in time slot 1 of Fn, which
is experienced by vehicle C. Here vehicles B and M received the same packet successfully,
which was lost at vehicle C, and thus were not able to detect the packet collision through
third parties slot-merge collision mechanism. As soon as C transmits, both the vehicles
A and L lose their slots in frame Fn. Therefore, both vehicles need to acquire new slots
for their next transmission. Considering the case that vehicle A and L selected the same
time slot once again in the next frame, Fn+1, which can never be ruled out, say slot 2 as
a new time slot for their next transmissions. Therefore, packet collision occurs again at
C in time slot 2, and C cannot receive any transmission in this slot, so slot 2 /∈ CVS(C).
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However, despite the packet loss at C, vehicle B was able to receive the FT from A, and
likewise, M received the FT from L. In slot 3, C finds the FT entry of A in CVS of B, i.e.,
(A,2) ∈ CVS(B), and that slot 2 is a non-occupied slot in its own CVS, i.e., slot 2 /∈ CVS(C);
therefore as per Rule V, the vehicle C adds this entry into its CVS, i.e., CVS(C)← (A,2). In
slot 4, vehicle C received another FT entry (L,2) ∈ CVS(M), whereas it already had an FT
entry for slot 2. Now, as per Rule VI, vehicle C prefers the entry with the lowest vehicle
id. Assuming that vehicle A has a lower vehicle ID than L, then (A,2) will be kept and
(L,2) will be discarded. In slot 7, C transmits with (A,2) ∈ CVS(C); on reception from C the
vehicle A retains slot 2, L vacates it and M updates the FT entry (A,2). In the next frame,
Fn+2, A transmits successfully through slot 2, and L selects a new slot from the free slots. In
this example scenario, vehicle C has broken the tie between A and L successfully.
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in time slot 1 at frame Fn; (b) Subsequent access collision between A and L in time slot 2 at frame
Fn+1; (c) Tie breakup mechanism enables A to retain time slot 2 and L acquires a new time slot 5 in
Fn+2. * indicates the time slots that caused the packet collisions.

4.8. Packet Structure

The packet structure of a periodic message in the MCCM-MAC protocol is shown
in Figure 10. The first field Source vehicle ID is the vehicle ID of the packet sender. The
FT-flag is a single bit that is set when the vehicle is sending its first transmission through
a newly selected time slot. It is used in the tie-breakup mechanism. The suggestion field
is used if a vehicle wants to propose a free slot to another vehicle. Currently, we have
limited one vehicle to suggest a slot for only one other vehicle within one frame. In a
TDMA-based MAC protocol, every vehicle sends its one-hop neighbor’s information, i.e.,
<vehicleID, slotNo>, in its periodic message. This is also known as frame information
(FI). MCCM-MAC needs two additional bits with each entry in FI, i.e., flags A and B. The
sending vehicle indicates the status of each entry by setting these flags according to Table 1.
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Table 1. FI entry’s classification based on Flag A and Flag B.

Flag A Flag B Classification

0 0 CVS
0 1 CVS + FT
1 0 PVS
1 1 PVS + CVS

5. Simulation Results

We have performed extensive simulations to compare the performance of our proposed
protocol. In experiment 1, we study the performance in highway and city scenarios.
Whereas, with experiment 2, we study the effect of the slot-merge collision between two
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vehicles (mc-2) and the slot-merge collision between three vehicles (mc-3) in an isolated
environment.

The simulation environment consists of the Open Modular Network Testbed in C++
(OMNET++) version 5.4.1 [42,43]. Using INET framework version 3.6.4 [44,45] for OM-
NET++, we have implemented three MAC modules corresponding to the VeMAC, MAC-AC
and MCCM-MAC protocols. The INET mobility models are used for simulating vehicle
mobility. In the highway scenario, a linear mobility model is used, and in the city scenario,
a combination of rectangular and tractor mobility models are used.

5.1. Experiment 1

In this experiment, we simulate the performance of three protocols, VeMAC [13],
MAC-AC [28] and MCCM-MAC, in a highway and a city scenario. Three performance
metrics are considered: packet loss count, average delay and packet delivery ratio. Each
packet loss indicates an instance of the extended delay. The lower packet loss count signifies
fewer instances of prolonged delay. Thus, the greater packet loss count signifies poorer
performance. The delay represents the time elapsed between two consecutive successfully
delivered periodic messages for a particular vehicle. It measures the capability of the
protocol for time-bound message delivery. Decreased delay signifies better performance.
In an ideal condition, when there is no packet loss, the average delay is equal to frame
length, i.e., 100 ms for our experiment. Several traffic safety applications require it to be
100 ms. This is why a typical size of the TDMA frame is taken as 100 ms in the majority
of the existing TDMA MAC protocols for VANETs [46]. However, with packet loss, the
average delay increases beyond 100 ms. Together, packet loss count and average delay can
describe the protocol’s suitability for the time-bound message delivery. Packet delivery
ratio (PDR) is the ratio of the number of transmissions successfully delivered to the ideal
number of transmissions. Ideally, each vehicle must have delivered a periodic message in
each frame. If transmissions of all vehicles are delivered successfully in each frame, then
PDR is equal to one; if all transmissions are lost, PDR is zero.

A two-way highway of 1000 m is considered for a highway scenario on which vehicles
can travel in both directions. For a city scenario, we have considered six streets, each
of 500 m, connected forming four corners, four three-way intersections, and one four-
way intersection. The road topology for the city scenario is shown in Figure 11. Initially,
all vehicles in the experiment possess a valid slot through which vehicles can transmit
successfully without causing any packet collision. However, as the simulation progresses,
vehicles may meet the merging collision scenario due to vehicle mobility, resulting in
the packet loss count. The channel is ideal; therefore, all the packet loss is either due to
merging collisions or subsequent access collisions, which cause the vehicle to experience
an extended delay. The number of vehicles is varied for each simulation run, but it remains
fixed during a particular simulation run. The total number of slots in the TDMA frame
remains fixed for all simulation runs.
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All protocols are simulated without any frame partitioning because our main purpose
is to evaluate the performance of a protocol without frame partitioning. The version
of VeMAC without disjoint partition is considered, i.e., “VeMAC with τ = 0” [13]. MAC-
AC [28] is given the maximum leverage by assigning a unique “competition timestamp” [28]
for each vehicle, which is the best case for MAC-AC. The rest of the simulation parameters
are given in Table 2.

Table 2. The simulation parameters.

Parameter Value

Frame size 100 ms
Slot size 0.5 ms
Number of slots in a frame 200
Number of vehicles 200–280
Speed of vehicles 80–120 km/h (uniform distribution)
Transmission range 200 m
Data rate 6 Mbps
Simulation duration 600 frames
Mobility framework INET [44,45]

Let Nv represent the total number of vehicles in a simulation run, and Ns be the number
of time slots in a frame. In the first simulation run for both scenarios, Nv = 200, where each
vehicle possesses a unique slot. As shown in Figures 12a and 13a, no collision is recorded
for this scenario with all protocols. This is because, for Nv ≤ Ns, if each vehicle possesses
a unique slot, no merging collision is possible. However, as we repeat the experiment
with more vehicles, i.e., Nv > 200, the collision count gradually increases. This is because
for Nv > Ns, not every vehicle can possess a unique slot, and due to the vehicle mobility,
whenever a merging collision scenario is encountered, packet collisions occur.
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Figure 12. Comparison of the protocols in a highway scenario with different vehicle densities,
(a) packet loss count of periodic messages, (b) average delay between the successfully delivered
periodic messages.
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Figure 13. Comparison of the protocols in a city scenario with different vehicle densities, (a) packet
loss count of periodic messages, (b) average delay between the successfully delivered periodic messages.

Figures 12 and 13 show the effect of varying vehicle density on the packet loss incurred
and the average delay between two consecutive successful periodic messages. It can be
seen in Figures 12a and 13a that our proposed protocol MCCM-MAC always remains
lowerin packet lost count than VeMAC and MAC-AC. For example, in a highway scenario
with a vehicle count of 230, MCCM-MAC resulted in 66% fewer packet loss counts than
VeMAC and 26% fewer than MAC-AC. In a city scenario, MCCM-MAC reduced packet loss
up to 74% (i.e., for Nv = 230) over VeMAC and up to 35% (i.e., for Nv = 250) over MAC-AC.
On average, MCCM-MAC improved 55% over VeMAC and 23% over MAC-AC in terms of
packet loss count.

Similarly, it can be seen in Figures 12b and 13b that MCCM-MAC resulted in a lower
delay than VeMAC and MAC-AC, which demonstrates its effectiveness for time-bound
message delivery. For example, in a city scenario with 280 vehicles, the average delay
between two consecutive periodic messages was 113 ms with VeMAC and 107 ms with
MAC-AC, whereas with MCCM-MAC, it was only 105 ms.

Figure 14 show the packet delivery ratio (PDR). Each value is the average across both
scenarios for a particular number of vehicles. MCCM-MAC remained higher than VeMAC
and MAC-AC throughout for all vehicle densities. Even for a high-density environment
with Nv = 280, the PDR of MCCM-MAC was above 94%. On average, MCCM-MAC
delivered the periodic messages with 97% PDR, which was the highest among competitors,
and with an average delay of 102 ms, which was the lowest among others.
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In general, as the vehicle density increased, the performance of all protocols degraded.
This is because, with the greater vehicle density, there is a decreased number of available
free slots. The lower the number of free slots, the greater the chance of packet collisions.
However, the proposed protocol MCCM-MAC remained superior to the VeMAC protocol
and MAC-AC protocol for both highway and city scenarios in terms of packet loss count,
delay, and packet delivery ratio. The reason is that our mitigation of the merging collision
results in decreased slot loss and hence reduced subsequent access collisions. In VeMAC,
most of the merging collision scenarios result in the slot loss of both vehicles, causing a
greater chance for a subsequent access collision. This subsequent access collision can then
also lead to another subsequent access collision. Therefore, the packet loss in VeMAC is
the highest.

In MAC-AC, there is no measure to avoid a subsequent access collision soon after
the merging collision. However, after the first subsequent access collision, it is tried that
one vehicle keeps using the same old slot. Therefore, the packet loss in MAC-AC is less
than in VeMAC. It must also be pertinent that the results shown for MAC-AC represent
the best case of MAC-AC because we have assigned a unique competition timestamp for
each vehicle. The limitation of MAC-AC is that the access collision between transmissions
of two vehicles can be mitigated only if they have different competition timestamps. The
competition timestamp of the vehicle is the time at which it receives the first packet. In
reality, there is always a possibility that vehicles can have the same competition timestamp,
in which case the MAC performance degrades. In the worst case of MAC-AC, when each
vehicle has the same competition timestamp so access collisions cannot be mitigated, the
performance of MAC-AC approaches VeMAC. Nevertheless, MCCM-MAC does not suffer
from limitation such as MAC-AC. Moreover, MCCM-MAC mitigates both the merging
collisions and the subsequent access collisions, resulting in the lowest packet loss count.
In the instances of merging collision where mc-2 and mc-3 took place as per scenarios
studied in experiment 2, MCCM-MAC can avoid the subsequent access collision, whereas
VeMAC and MAC-AC cannot do so. Consequently, MCCM-MAC remained superior in
both highway and city scenarios.
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5.2. Experiment 2

In this experiment, we particularly focus on the aftermath of the merging collisions
through some particular simulation scenarios in an isolated environment. The packet loss
ratio is evaluated for the vehicles that meet the slot-merge collision. It is the ratio of the
number of packets lost to the number of packets transmitted by those vehicles. In the
absence of any packet loss, this ratio is zero; if all packets are lost, then the ratio is one. The
lesser value signifies better performance, i.e., fewer subsequent access collisions and less
extended delay.

Four simulation scenarios are considered. In simulation scenario #1, the effect of
one slot-merge collision between two vehicles (mc-2) is studied. Two sets of vehicles are
considered, as shown in Figure 1. There are only two vehicles, one in each set, which possess
the same time slot. However, initially, this does not cause communication interference
because both vehicles are far enough to avoid communication interference. Therefore, in the
first frame, F0, all transmissions are successful. In the next frame, F1, both sets are merged,
and one slot-merge collision between two vehicles (mc-2) occurs. Simulation is run for two
more frames, and results are recorded for F1 to F3. In simulation scenario #2 (Figure 15a),
two slots are common in each set such that two slot-merge collisions (mc-2) take place in F1.
Similarly, in simulation scenario #3 (Figure 15b), three slots are common in each set such
that three slot-merge collisions (mc-2) take place in F1. However, in simulation scenario
#4 (Figure 7), three sets are considered with one slot common resulting in a slot-merge
collision between three vehicles (mc-3).
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In general, the results of this experiment demonstrated the effectiveness of our miti-
gation of the slot-merge collision, which has resulted in a lower packet loss ratio for the 
vehicles that met the packet collision due to the merging collision scenario. The higher 
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The existing protocols cannot mitigate in these particular scenarios causing all the vehicles 
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Figure 15. Example for (a) Simulation scenario #2 where two mc-2 take place, i.e. between nodes (i)
A and L, (ii) B and M; (b) Simulation scenario #3 where three mc-2 take place, i.e. between nodes
(i) A and L, (ii) B and M, (iii) C and N; * shows the nodes that meet the slot-merge collision, mc-2
represents a slot-merge collision between two nodes.

Figure 16 compare the packet loss ratio of the vehicles that met the slot-merge collision
in the aforementioned scenarios with VeMAC [13] and MCCM-MAC protocols. The X-
axis shows the number of available free time slots at the time of the merging collisions.
The number of free time slots is inversely proportional to the vehicle density in the two-
hop neighborhood of the vehicle. A lesser number of free slots signify greater vehicle
density. The Y-axis shows the corresponding packet loss ratio. Each data point represents
the average value of 30 repetitions. The graph of the VeMAC protocol shows that the
higher the vehicle density, the more packet loss is results from a merging collision. This
is because when a merging collision takes place between two vehicles, both vehicles lose
their respective slots and they have to randomly pick a new slot from the available set of
free slots. If there are fewer available free slots, then there are greater chances that both
vehicles will select the same time slot again.
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Figure 16. The packet loss ratio (PLR) of vehicles that suffered a slot-merge collision in the aftermath
of (a) merging collisions between two vehicles (mc-2), (b) a merging collision between three vehicles
(mc-3). The proposed protocol remains lower in PLR and is unaffected with the increase in vehicle
density in the two-hop neighborhood as long as the minimum required number of free slots are
available, i.e., free slots count ≥ vehicles count which compete for acquiring a new slot.

In contrast, the graph of the MCCM-MAC protocol shows that the packet loss ratio
of the vehicles which met the merging collision is independent of available free slots as
long as at least one free slot is available for each vacating vehicle. Furthermore, it remains
lower in the packet loss ratio than the VeMAC protocol. This is because after the merging
collision between two vehicles (mc-2) in the given scenarios, one of the vehicles retains
the existing slot, and the other one picks the new slot. As there was only one vehicle that
needed to acquire the new slot, there was no competition and hence no packet collision
chance. If the merge collision was between three vehicles (mc-3), then one of the vehicles
kept using the existing slot due to our mitigation of third parties slot-merge collision, and
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others acquired the new slots through the slot suggestion mechanism, thereby avoiding the
packet collision.

In general, the results of this experiment demonstrated the effectiveness of our miti-
gation of the slot-merge collision, which has resulted in a lower packet loss ratio for the
vehicles that met the packet collision due to the merging collision scenario. The higher
packet loss indicates more subsequent access collisions and the extended delay problem.
The existing protocols cannot mitigate in these particular scenarios causing all the vehicles
which have met mc-2 or mc-3 to vacate their existing slot. The occurrence of these merg-
ing collision scenarios in the highway and city environment causes deterioration in the
protocol’s performance, which is also evident from the results of experiment 1.

6. Conclusions and Future Work

This paper has presented a distributed TDMA-based MAC protocol that mitigates
packet collisions by improving their aftermath scenario. Using three novel mechanisms,
i.e., the third parties slot-merge collision mechanism, slot suggestion mechanism and
tie breakup mechanism, the proposed protocol enables one of the vehicles in the packet
collision to retain the slot, which leads to two-fold benefits: early recovery of vehicles after
the packet collision and reduced subsequent access collisions. Our simulation results show
that the proposed protocol significantly reduced the number of packet losses, i.e., 55%
fewer than VeMAC and 23% fewer than MAC-AC. On average, MCCM-MAC delivered the
periodic messages with 97% PDR, which was the highest among competitors, and with an
average delay of 102 ms between the successful periodic messages, which was the lowest
among others.

In the future, we intend to study the impact of poor channel conditions on the perfor-
mance of these protocols. We further intend to develop a machine-learning-based solution
to detect the packet collisions in a distributed TDMA-based MAC protocol for VANETs.
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